Complejidad computacional. CSP y Subexp.


A CSP with n variables ranging over a domain of d values can be solved by brute-force in dn steps (omitting a polynomial factor). With a more careful approach, this trivial upper bound can be improved for certain natural
restrictions of the CSP. In this paper we establish theoretical limits to such improvements, and draw a detailed landscape of the subexponential-time complexity of CSP. 

We first establish relations between the subexponential-time complexity of CSP and that of other problems, including CNF-SAT. We exploit this connection to provide tight characterizations of the subexponential-time complexity of CSP under common assumptions in complexity theory. For several natural CSP parameters, we obtain threshold functions that precisely dictate the subexponential-time complexity of CSP with respect to the parameters under consideration.

Our analysis provides fundamental results indicating whether and when one can significantly improve on the brute-force search approach for solving CSP.

Para más detalles puedes leer al paper.


Terms and conditions: 1. Any commenter of this blog agrees to transfer the copy right of his comments to the blogger. 2. RSS readers and / or aggregators that captures the content of this blog (posts or comments) are forbidden. These actions will be subject to the DMCA notice-and-takedown rules and will be legally pursued by the proprietor of the blog.

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de

Estás comentando usando tu cuenta de Cerrar sesión /  Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )


Conectando a %s

A %d blogueros les gusta esto: